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Buildings have been identified as one of the biggest contrib-
utors of negative environmental impacts worldwide, more 
specifically energy usage due to the use of air conditioning 
and mechanical ventilation. Strategies such as cross-venti-
lation have become a reliable alternative to diminish some 
of these effects. However, designing for cross ventilation is 
no easy feat, as it requires architects and designers to study 
in detail the building context, overall massing design and 
building enclosure to maximize airflow potential. On the 
other hand, Computer Fluid Dynamics (CFD) airflow simula-
tions are not used as often in architectural settings primarily 
due to time constraints, lack of performance metrics and 
quality assurance. The proper use of CFD airflow simulations 
involves a complex setup and run-time process, due to the 
large mathematical calculations involved.

This study aims to apply existing generative machine learning 
algorithms to compute CFD wind velocity simulations to 
significantly shorter run times while maintaining a relatively 
high accuracy level, during the initial design stages. To test 
the proposed hypothesis, multiple machine learning models 
were created, trained, and tested. The evaluation metrics for 
these models consisted of using different image similarity 
methods to compare the images produced by the machine 
learning model to their CFD engine counterparts. 

The results obtained indicate that GAN application for CFD 
airflow predictions can produce acceptable results showing 
a significant run time difference of over a minute between 
the CFD simulation and the machine learning model. Having 
evaluated and proven this study as a proof of concept, this 
can set the precedents for further research on the use 
of CFD airflow simulations and machine learning within 
architectural practice. Allowing architects and designers 
to incorporate the use of CFD airflow simulations within 
their workflows.

INTRODUCTION
Over the past couple of decades, buildings have been identified 
as contributing to the negative environmental impacts world-
wide 1. Being responsible for 40% of carbon emissions 2, with 
56% of all energy use going to air conditioning and mechani-
cal ventilation in hot-humid climates 3. As energy consumption 
increases, passive cooling strategies, such as cross-ventilation, 
have become a reliable alternative. However, designing for 
cross ventilation is no easy feat, as it requires architects and de-
signers to study in detail the building context, overall massing 
design and building enclosure to maximize airflow potential. 

Technological advances, on the other hand, have simplified and 
reworked the way architects design, including the use of envi-
ronmental analysis. Using different software, these processes 
can be performed from a single two or three-dimensional 
model inside a virtual environment. However, as many archi-
tects have identified: “design time is usually quite short and 
anything adding to that is an obstacle.” 4, in addition to the lack 
of quality assurance and performance guidelines. It is uncom-
mon for architects and designers to incorporate these testing 
simulations within their workflow.

Due to improvements in the creations of user-friendly tools, 
architecture firms are increasingly implementing daylight, radi-
ation, glare, and energy simulations into their workflows. These 
tools rely on efficient, straightforward, and well-documented 
engines that produce data graphically and legibly. Natural ven-
tilation studies, on the other hand, are much more complicated 
due to exponentially increasing mathematical calculations re-
quired to simulate the interaction between airflow and the 
defined enclosure. 

As data has revolutionized how we use information, new meth-
ods are being developed to manage the increasing size of data 
sets. A solution to automize the data management process has 
been the incorporation of artificial intelligence, specifically, the 
use of machine learning algorithms. The reliance on these al-
gorithms is significant as computers can now learn from these 
increasing data sets and perform multiple functions from 
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complex mathematical calculations to image generation, with 
minimal human intervention. 

This study aims to apply existing generative machine learning 
algorithms to compute Computer Fluid Dynamics (CFD) wind 
velocity simulations to significantly shorter run times while 
maintaining a relatively high accuracy level. These generative 
algorithms aim to provide faster run times for CFD simulations 
than traditional simulation processes and obtain relatively 
accurate results. All with the intent to promote the use of 
cross ventilation and the incorporation of CFD models within 
design workflows.

BACKGROUND
As diverse topics from architecture and machine learning 
will be covered throughout this study, this section explains a 
general overview of these, ranging from natural ventilation 
implementation and basic cross ventilation strategies to basic 
concepts of the functionality of machine learning algorithms. 

NATURAL VENTILATION & COMPUTER FLUID 
DYNAMICS:
Natural ventilation consists of moving air from an external 
source to an indoor space due to the changes in pressure 
without any mechanical system. Its usage has many purposes, 
from air quality control to passively cooling an interior space. 
Three predominant approaches include the following: cross, 
stacked, and single sided ventilation5. On the other hand, CFD 
is a combination of multiple fields to simulate the movement 
and reaction of various fluids. In architecture, these are used 
to examine natural ventilation, infiltration, and dispersion of air 
contaminants. The simulation process consists of generating a 
geometric model and divide it into a cell grid 6. After inputting 
a set of criteria, such as wind velocity and temperature, the 
simulation will calculate how the desired airflow is affected by 
the input geometry. 

Two approaches when simulating airflow are coupled and 
decoupled. The first involves connecting the outdoor and in-
door airflow in a single model. The counterpart only involves 

analyzing either indoor or outdoor environments 7. As studies 
suggest (8,9,10), the use of the coupled models is the optimal 
approach when it comes to cross-ventilation studies, as it 
considers how the pressure of the building envelope will be 
affected by the presence of the opening. 

MACHINE LEARNING:
Machine learning is a subset of artificial intelligence, which 
has the quest to teach computers to perform a series of tasks 
without being explicitly programmed for them. This process is 
comprised of three key components. First, the data set from 
which the model will learn during its training process, the for-
mat of these can range from all kinds of data types. Secondary, 
are the features telling the machine the essential factors to be 
aware of. Lastly is the algorithm, which provides a particular 
method to solve the problem 11. As there are various kinds of 
algorithms, there are also multiple ways to teach or use a ma-
chine to help solve problems. As described in Python Machine 
Learning by Raschka & Mirjalili, this consists of three methods, 
supervised, unsupervised, and reinforcement learning. The 
supervised machine learning model is trained with a dataset 
containing labeled information. Its outcomes are known, allow-
ing the model to receive new unlabeled data as input to make 
predictions. In reinforcement learning, the model generates 
a “reward signal,” which is not the correct answer, but a com-
parison of how well the performed action relates to the reward 
function. Lastly, in unsupervised learning it is up to the machine 
to use specific techniques to find patterns and relationships 
within the data 12.

GENERATIVE ADVERSARIAL NETWORKS (GAN):
Generative Adversarial Networks (GAN) uses generative mod-
eling in combination with convolutional neural networks. The 
final purpose of GAN is to generate new data predictions from 
nothing. The network is composed of two models, the genera-
tor, and the discriminator. The first generates new examples, 
while the second tries to identify whether the generator’s ex-
amples are real or fake in a “zero-sum game” 13. This kind of 
model’s primary data type are images, although other types 
have been used. Both networks are trained in an alternating 

Figure 1. Natural Ventilation Strategies: (Left) Cross Ventilation, (Middle) Stacked Ventilation, (Right) Single Sided Ventilation
T. Stathopoulos, “Wind and Comfort,” Jul. 2009.
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state during the training process until the discriminator model 
cannot tell the difference between real and fake images cre-
ated by the generator 14.

METHODOLOGY & DATA SET CREATION:
As an approach to the problems previously stipulated, this 
section will explore the use of supervised machine learning 
algorithms in combination with coupled airflow CFD analysis 
in architectural buildings. The process consists of three major 
steps: creating a data set, training the machine learning model, 
and evaluating its results. For this study, only cross ventilation 
was studied on a two-dimensional plane.

The creation of the data set consists of three stages: form 
generation, simulation run, and post-processing. The form 
generation step was made inside Rhinoceros’s Grasshopper, 
beginning with the generation of a 3.3m x 3.3m square for 
the base plan, offsetting 0.1m walls on all sides and extrud-
ing 2m in height. After the generation of the walls, panoramic 
windows were created, which were subdivided into three sec-
tions, providing twelve windows for this scenario. To limit the 
number of variations, combinations were limited to between 
two and four windows. This leads to a total of 781 variations. 
Another applied constant was the wind speed at 4.5m/s and 
its direction, coming from the south. To ensure the best run 
time/accuracy relationship, five grid densities were evaluated 
ranging between 1.0 and 0.1 meters. Based on the obtained 
results, 0.2 was determined to be the best alternative as it pro-
vided higher accuracy results than the coarse alternatives and 
close to the finer ones. Run times resulted in an average of 64 
seconds per simulation for the 0.2 density, while the finer 0.1 
density had an average of 206 seconds.

The second phase of the data set creation, the simulation run 
stage, was performed in two steps, recipe generation and 
simulation execution. The CFD engine used for this study was 
OpenFOAM, which is the most validated open-source engine 
for running advanced simulations. This process consisted of 
passing all the final geometric iterations through the Butterfly 
plug-in, which prepared a specific recipe for the engine to un-
derstand the required steps to run the actual CFD simulation. 

Then consisted of batch running all the recipes inside the en-
gine’s terminal and store the results. 

The third stage was post-processing, performed inside 
Rhinoceros and Grasshopper. This stage consisted of reloading 
the original three-dimensional model and loading the butterfly 
recipe back into the Grasshopper. Once both were loaded, a 
2048px x 2048px image was captured of the building’s plan 
view alongside the airflow simulation results and stored in an 
external folder. These will be the input data for the machine 
learning model. In addition to the CFD map images, an image 
without the simulation outcome was also captured to serve 
as a base input.

After all the data was collected, it was split into two groups, 
testing, and training. This division was done at an 80/20 ratio 
(training, testing) to use the same dataset to train and test the 
model without generating an additional data set. The purpose 
of using an 80/20 ratio as opposed to a 60/40 was to provide 
the machine learning model with a larger data set to train as it 
increases the model’s accuracy. 

MACHINE LEARNING & TRAINING:
For the machine learning model, the Pix2PixHD algorithm by 
NVIDIA was used as a base. This framework uses the CycleGAN 
technique, which automatically trains the image-to-image 
translation models without using paired examples—instead 
of using a collection of images, having a source and a target, 
which do not need to be related. Multiple models were trained 
during this stage to identify how manipulating hyperparam-
eters would affect the model’s efficiency when predicting 
airflow patterns. 

The training parameters were the following: the data set 
contained no labels, epoch checkpoints saved in increments 
of five until reaching one hundred, images were not cropped 
or resized, images were flipped, and loaded at a resolution of 
512px by 512px. Two discriminators were used to reduce the 
possibility of overfitting. The main parameter altered was the 
batch size, evaluated in 1, 3, and 5 variations. Batch size refers 
to the number of images the model will use during its training in 

Figure 2. Data Set Creation Steps (1. Form Generation (Left) | 2. Simulation Run (Middle) |  3. Post Processing (Right))
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each iteration or epoch. In addition, the dataset was modified 
by adding additional padding to the images. After setting these 
parameters, the models began training with a mixture of using 
Google’s Collab and local resources. All models were trained 
for one hundred epochs and took an average of eight hours to 
reach the 100-epoch mark. 

DATA EVALUATION
As other machine learning models are trained with a loss 
function until convergence, evaluating GAN’s results is not 
straightforward 15. Given that no objective loss function is used 
to train the GAN generator, there are no assets to measure its 
development and progress. As a result, given that GAN’s are 

image-based, the best method to determine their efficiency 
is upon visual inspection, however, these can be subjective.

In contemplation of this situation a methodical approach was 
devised, which consisted of measuring the similarity between 
the image produced by the GAN model and the Butterfly engine. 
These were compared using two techniques within a python 
script using the PIL and cv2 image libraries. The ORB (Oriented 
FAST and Rotated BRIEF) feature matching technique identifies 
different characteristics within the images to compare them. 
This method was selected compared to others as it is open 
source and requires less computational cost 16. In addition, im-
ages were evaluated by their structural similarity (SSIM), which 
compares images on three main metrics: luminance, contrast, 
and structure 17 18. This process takes a more comprehensive 
approach; evaluating images by looking at a group of pixels 

Figure 3. Epoch & Batch Size Graph in Comparison in Relation to Image 
Similarity
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Figure 4. Test Results of Rectangular Floor Plan on Both Initial and Padded Machine Learning Model

Figure 5. Initial & Padded Machine Learning Model for Rectangular Plan Image Similarity Comparison
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instead of a pixel to pixel-based to determine their similar-
ity. This provided a similar approach to how humans would 
perceive images. Both evaluation methods returned a num-
ber from 1 to -1, the highest indicating the most resemblance 
between the images and lowest indicating the least similarity 
between the images. As these metrics evaluate images differ-
ently, the average from both methods was calculated to obtain 
an objective result. These methods were applied at different 
training stages of each model to examine their learning process 
and how each of the different parameters affected its learning 
curve. In addition to comparing the image similarity between 
the image produced by the GAN model and the Butterfly en-
gine, run times between the two models were also recorded 
and evaluated using a custom python script. 

RESULTS AND DISCUSSION
After generating the data set, training the machine learning 
models, and evaluating the results, the proposed hypothesis of 
using GAN to obtain relatively accurate results for CFD airflow 
simulations was tested. Multiple models were evaluated at 
different training intervals to observe how their training pro-
gressed. After identifying the most effective model, this one 
was tested using a different floor plan layout to observe its 
prediction capabilities to unseen data and compare it with the 
initial data set. 

INITIAL & PADDED DATA SET: 
To evaluate the previously explained methodology, an initial 
machine learning model was trained using a data set of 624 
images for 100 epochs. The data set consisted of images of 
a single square floor plan with various window configura-
tions. After finishing the training phase, the model was tested 
using 15 unknown images. To the naked eye, images would 
appear almost identical, obtaining a structural similarity index 
of 95%, on average, when compared to their CFD simulation 
counterparts. When evaluating run times, the traditional CFD 
simulations took an average of 62 seconds to complete, while 
the machine learning model took an average of 0.2 seconds. 
These results present a clear indication of the efficiency of GAN 
to quickly generate accurate predictions. The images produced 
began to support the efficiency of these modes when being 
applied to CFD airflow simulations. However, when observing 
the results during the different training stages a problem was 
found. Within the first couple of epochs, the model produced 
substantially accurate results, raising questions about the ef-
ficiency of the data set or the hyperparameters used. 

After analyzing these concerns, the model was presented with 
a set of rectangular floor plans, which produced unsatisfac-
tory results. These showed how the model tried to generate 
the square floor plan in the exact location, indicating it had 
memorized specific pixels of the images, which caused rapid 
and accurate results. After further evaluation it was found 
this overfitting was caused as all images contained a centered 
floor plan, which helped the model predefine its location. Even 

after flipping the images, these presented no notable change 
in the training set, given they were symmetrical. To correct this 
problem, a new data set was created based on the initial one 
but adding padding around the existing images to change the 
scales of the floor plans while maintaining the same square 
aspect ratio. This shift helped avoid having the floor plan always 
centered on the image and at the same scale, providing an ad-
ditional level of complexity for the model to predict.

As a next step, three different models were trained for 100 
epochs using 624 images of this new data set, changing their 
batch size to observe how it would affect the training process 
of the models. The batch sizes used were 1, 3, and 5. After 
training all these models, they were tested at epoch 5, 25, 50, 
75, and 100 epochs to observe the development of the model 
at different training intervals. The number 5 checkpoint was se-
lected to compare the models’ learning results with the initial 
data set model. For these testing, the previous two similarity 
methods were applied (ORB & SSIM), in addition to the record-
ing of run times. 

PADDED DATA SET RESULTS: 
These machine learning models were tested using a set of five 
images containing the same square floor plan with different 
window combinations and image compositions. As a result 
of training the different machine learning models, visually, all 
models began their training producing similar results. After 
passing the 25-epoch mark, all three models produced images 
with an average of 90% similarity with the original CFD images. 
The model with a batch size of 3 produced the most accurate 
and consistent results at the end of the training phase, followed 
by the model with a batch size of 1, and lastly, the model with 
a batch size of 5. This last model appeared to have trouble 
predicting images even after the 100-epoch mark, as one of 
the tested images obtained the lowest scores of 79% similarity 
when compared against their CFD counterpart. 

Regarding run times, it took on average 60 seconds to perform 
an analysis on the CFD engine, in contrast, of 0.12 seconds for 
the machine learning model. Except for the first image to go 
through the model as it took on average 1.38 seconds, given 
it had to generate the models and prepare the neural net-
work. This accounts for a difference of 600 times faster than 
the CFD engine when presented with similar data. However, 
this difference is to be expected, as similar results were ob-
served in the work of Layout 5 19 and Kacper Radziszewski & 
Marta Waczyńska20  in their daylight analysis. Nonetheless, 
this emphasizes the efficiency of machine learning models and 
supports the arguments made in this study to help designers 
obtain relatively accurate CFD airflow predictions in less time.

RECTANGULAR FLOOR PLAN TYPOLOGY TEST 
These machine learning models will eventually be exposed to 
unknown data and generate predictions based on their train-
ing. Based on the results from the previous tests, the model 
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with the best performance was the one with a batch size of 3. 
This model, alongside the original one trained with the initial 
data set, was exposed to a rectangular floor plan to test their 
prediction capabilities when presented with unseen data. For 
this test five different window combinations were selected on a 
rectangular floor plan to provide different scenarios. Given that 
the original model was not trained on images that contained 
padding, both were tested with a set of images with padding 
and without padding.

As a result, the initial machine learning model performed poor-
ly, as it could not generate satisfactory results of the airflow 
pattern for the rectangular floor plans. However, it performed 
marginally better when presented with the non-padded im-
ages, as in this case, even though the airflow patterns are 
unclear, a floor plan layout was defined. The model trained 
on the padded images outperformed by a large margin the 
original model. It produced relatively accurate results of the 
airflow patterns on both the padded and non-padded images. 
When comparing the generated images with their simulation 
counterparts, the original model obtained an average of 39% 
image similarity compared to the padded model with an aver-
age of 79%, indicating a difference of 40%. 

CONCLUSION & FUTURE WORK
The result obtained in this research indicates that GAN applica-
tion for CFD airflow predictions can produce acceptable results 
for designers, allowing them to advance their design process 
through an alternate method with marginal time differences 
compared to traditional CFD simulations. Results show a signifi-
cant run time difference of an average of 60 seconds between 
the CFD simulation and the machine learning model. The GAN 
models generated predictions six hundred times faster on both 
similar and unknown data, generating relatively accurate re-
sults with a range between 79 to 95 percent image similarity 
with the CFD simulation output. While seconds to a minute 
difference might not appear significant, minutes can grow ex-
ponentially to hours and even days when performing complex 
CFD simulations. Therefore, these time differences indicate a 
significant cut in run times. 

Alternating different hyperparameters, such as adding more 
discriminators or increasing the batch size, might help produce 
more accurate results when using a larger data set. However, 
one of the major factors for a successful GAN model is the data 
set used for training. As observed in this study, the padded 
data set provided more varied and diverse information when 
compared to the initial data set—resulting in a 40% increase in 
image similarity to the actual CFD simulation, even when tested 
with unknown floor plan layouts. The variations referred to do 
not only account for the floor plan and window configurations 
themselves but also image composition—alternating param-
eters such as floor plan location, scale, and orientation within 
the image itself.

This project aims to expand the floor plan typologies to more 
complex forms and window configurations for future work. 
Alternatively, this research aims to explore other machine 
learning algorithms such as linear regression and other ANN 
and compare them alongside GAN to identify the most efficient 
machine learning algorithm for the desired CFD airflow simu-
lation. The long-term goal is to convert the trained machine 
learning model into a Grasshopper and Dynamo Plug-In. After 
implementing the plug-in, user studies would be conducted 
with architects to observe how this system would help them 
within their design workflow and implement them within their 
practice. This study is a small starting point for the application 
of GAN for CFD simulations. The current goal is to provide ad-
ditional insight for future researchers to continue developing 
the use of GAN for different CFD simulations and incorporate 
them into architectural workflows. 
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